08.Previous Year Questions: Introduction to Trigonometry

Previous Year Questions 2025

Q1: If tan A+ cot A= 6, then find the value of tan2A + cot2 A – 4. 

Hide Answer  

Ans: We have, tanA + cotA = 6 
On squaring both sides, we get (tanA + cotA)2 = 36 
⇒ tan2A + cot2A + 2 tanA cotA = 36 
Since tan A cot A = 1
⇒ tan2A + cot2A + 2 = 36
⇒ tan 2A + cot 2A = 36 – 2 = 34 
∴ tan2A + cot2A – 4 = 34 – 4 = 30

Q2:  If tan 3θ = √3, then θ/2 equals 
(a) 60° 
(b) 30° 
(c) 20° 
(d) 10°

Hide Answer  

Ans: (d) 
We have, tan3θ = √3 
⇒ tan3θ = tan 60° 

Q3: If sin 4θ = √3/2, then θ/3 equals:
(a) 60° 
(b) 20° 
(c) 15° 
(d) 5° 

Hide Answer  

Ans: (d) 
Given, sin 4θ = √3/2 = sin 60°.
⇒ 4θ = 60°
⇒ θ = 15°.

Q4: If α + β = 90° and α = 2β, then cos2α + sin2β is equal to: 
(a) 0 
(b) 1/2
(c) 1 
(d) 2 

Hide Answer  

Ans: (b) 
α + β = 90° and α = 2β     …(i) 
∴ 2β + β = 90° ⇒ 3β = 90° ⇒ β = 30° 
∴ α = 2 × 30° = 60° [From (i)] 
∴ cos²α + sin²β = cos²60° + sin²30°

Q5:  then x : y =
(a) 1 : 1 
(b) 1 : 2
(c) 2 : 1 
(d) 4: 1

Hide Answer  

Ans: (c) 

Q6: If 4k = tan260° – 2cosec2 30° – 2tan2 30°, then find the value of k. 

Hide Answer  

Ans: Given, 4k = tan260° – 2 cosec230° – 2 tan230° 

Q7: If x cos60° + ycos0° + sin30° – cot45° = 5, then find the value of x + 2y. 

Hide Answer  

Ans: We have, x cos60° + y cos0° + sin30° – cot45° = 5 

Q8: 

Hide Answer  

Ans: 

Q9: 
(a) cot θ
(b) 
(c) 
(d) tan θ

Hide Answer  

Ans: (a) 
We have, 
 [∵ 1 – cos2θ = sin2θ]

Q10:  The value of (tan A cosec A)2 – (sin A sec A)2 is: 
(a) 0 
(b) 1 
(c) -1 
(d) 2

Hide Answer  

Ans: (b) 
We have, 
(tan A · cosec A)2 – (sin A . sec A)2  
Using identities:
tan A = sin A / cos A,
cosec A = 1 / sin A,
sec A = 1 / cos A.
sec² A – tan² A = 1

Q11: (cotθ + tanθ) equals: 
(a) cosecθ secθ 
(b) sinθ secθ
(c) cosθ tanθ 
(d) sinθ cosθ

Hide Answer  

Ans: (a)
We have, cotθ + tanθ 
cot θ = cos θ / sin θ,
tan θ = sin θ / cos θ.

Q12:  The value of 
(a) 1
(b) 0
(c) -1
(d) 2

Hide Answer  

Ans: (c)

Q13: In a right triangle ABC, right-angled at A, if sin B = 1/4 then the value of sec B is 
(a) 4
(b) √15/4
(c) √15
(d) 4/√15

Hide Answer  

Ans: (d) 
Given, sin B = 1/4

Q14: If a secθ + b tan θ = m and b sec θ + a tan θ = n, prove that a2 + n2 = b2 + m2   

Hide Answer  

Ans: 
We have, a sec θ + b tan θ = m
and b sec θ + a tan θ = n
Taking, m² – n²
= (a sec θ + b tan θ)² – (b sec θ + a tan θ)²
= a²sec²θ + b²tan²θ + 2ab tan θ sec θ – b²sec²θ – a²tan²θ – 2ab tan θ sec θ
= a²(sec²θ – tan²θ) + b²(tan²θ – sec²θ)
= a² × 1 + b² × (-1)
= a² – b²
∴ m² – n² = a² – b²
⇒  a² + n² = b² + m²
Hence, proved.

Q15: Use the identity: sin2A + cos2A = 1 to prove that tan2A + 1 = sec2A. Hence, find the value of tan A, where sec A = 5/3, where A is an acute angle.

Hide Answer  

Ans: 
To prove: tan2A + 1 = sec2
Taking L.H.S., tan2 A+ 1 

∴ L.H.S = R.H.S

Q16: Prove that: 

Hide Answer  

Ans: 

Q17: Prove that: 

Hide Answer  

Ans: 


Q18: Prove that: 

Hide Answer  

Ans: 

Q19: 

Hide Answer  

Ans: 

Q20: Given that sinθ + cosθ = x, prove that 

Hide Answer  

Ans: sin θ + cos θ = x …(i) 
Squaring both sides in equation (i), 
sin² θ + cos² θ + 2sin θ cos θ = x² 
2sin θ cos θ = x² – 1 …(ii) 
[∵ sin² θ + cos² θ = 1] 
Also, sin² θ + cos² θ = (sin θ + cos θ)² – 2sin θ cos θ

Q21: Prove that: 

Hide Answer  

Ans: 

Previous Year Questions 2024

Q1: If sin α = √3/2, cos β = √3/2 then tan α. tan β is:    (1 Mark) (CBSE 2024)
(a) √3
(b) 1/√3
(c) 1
(d) 0

Hide Answer  

Ans: (c)
sin α = √3/2, ⇒ sin α  = sin 60º
⇒ α = 60º
∵ cos β = √3/2, 
⇒ cos β = cos 30º 
⇒ β = 30º 
tan α. tan β = tan 60º. tan 30º
= √3 x 1√3

= 1

Q2: Evaluate: 5 tan 60°(sin² 60° + cos² 60°) tan 30°        (3 Marks) (CBSE 2024)

Hide Answer  

Ans:

5 tan 60°(sin² 60° + cos² 60°) tan 30° = 5 × √31 × 1√3

= 5 × √3 × √3

= 5 × 3

= 15

Q3: Prove that: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1     (3 Marks) (CBSE 2024)

Hide Answer  

Ans:
L.H.S. = (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
= (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Since, cosec θ = 1/sin θ, sec θ =  1/cos θ, tan θ = sin θ/cos θ, cot θ = cos θ/sin θ
= (1/sin θ – sin θ) (1/cos θ – cos θ) (sin θ/cos θ + cos θ/sin θ)

= 1 – sin2θsin θ × 1 – cos2θcos θ × sin2θ + cos2θsin θ . cos θ

= cos2θ × sin2θsin θ × cos θ × 1sin θ . cos θ

= sin θ . cos θ1 × 1sin θ . cos θ    [ : sin2θ + cos2θ = 1 ]

= 1 = R.H.S.
Hence, proved.

Get additional INR 200 off today with EDUREV200 coupon.

Previous Year Questions 2023

Q1: If 2 tan A = 3, then find the value of 4 sin A + 5 cos A6 sin A + 2 cos A  is   (3 Marks)(2023)

Hide Answer  

Ans:

Given:

2 tan A = 3 ⇒ tan A = 3/2

Using sin2 A + cos2 A = 1, let:

sin A = 3/√13, cos A = 2/√13

Substituting in the given expression:

4 sin A + 5 cos A6 sin A + 2 cos A

= 4 × 3/√13 + 5 × 2/√136 × 3/√13 + 2 × 2/√13

= 12/√13 + 10/√1318/√13 + 4/√13

= 22/√1322/√13

= 1

Q2: 5/8 sec260° – tan260° + cos245° is equal to    (1 Mark) (2023)
(a) 5/3
(b) -1/2
(c) 0
(d) -1/4

Hide Answer  

Ans: (c)
Sol:
58 × (2)2 – (√3)2 + (1√2)2 = 5/8 × 4 – 3 + 12 = 0
 

Q3: Evaluate 2 sec2θ + 3 cosec2θ – 2 sin θ cos θ if θ = 45°      (2 Marks) (CBSE 2023)

Hide Answer  

Ans: Since θ = 45°, sec 45° = √2, cosec 45° = √2, sin 45° = 1/√2 cos 45° = 1/√2
2sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
= 2 (√2)2 + 3 (√2)2 – 2 (1√2) × (1√2)

= 2 × 2 + 3 × 2 – 2 × 12

= 4 + 6 – 1

= 9

Q4: Which of the following is true for all values of θ(0o ≤ θ ≤ 90o)? (1 Mark) (2023)
(a) 
cos2θ – sin2θ – 1
(b) 
cosec2θ – sec2θ- 1
(c) 
sec2θ – tan2θ – 1
(d) 
cot2θ- tan2θ = 1

Hide Answer  

Ans: (c)

Option (a): cos²θ – sin²θ – 1
Using the identity: cos²θ – sin²θ = cos 2θ, we get cos²θ – sin²θ – 1 = cos 2θ – 1, which is not always true. So, this option is incorrect.

Option (b): cosec²θ – sec²θ – 1
Using the identities cosec²θ = 1 + cot²θ and sec²θ = 1 + tan²θ, 
we get cosec²θ – sec²θ – 1 = (1 + cot²θ) – (1 + tan²θ) – 1 = cot²θ – tan²θ – 1, which is not always zero. So, this option is incorrect.

Option (c): sec²θ – tan²θ – 1
Using the identity sec²θ = 1 + tan²θ, 
we get sec²θ – tan²θ – 1 = (1 + tan²θ) – tan²θ – 1 = 0, which is always true. 
So, this option is correct.

Option (d): cot²θ – tan²θ = 1
Using the identity cot²θ = 1/tan²θ, we get cot²θ – tan²θ = (1/tan²θ) – tan²θ, which is not always equal to 1. So, this option is incorrect.

Q5: If sinθ +cosθ = √3. then find the value of sinθ. cosθ.   (3 Marks) (2023)

Hide Answer  

Ans: Given, sinθ +cosθ = √3
Squaring both sides, we get (sinθ + cosθ)2 = (√3)2
⇒ sin2θ + cos2θ + 2sinθ cosθ = 3 ( ∵ sin2θ + cos2θ = 1)
⇒ 1 + 2sinθ cosθ = 3 
⇒ 2sinθ cosθ = 3 – 1  
⇒ 2sinθ cosθ = 2
⇒  sinθ cosθ = 1

Q6: If sin α = 1/√2 and cot β = √3, then find the value of cosec α + cosec β.   (3 Marks) (2023)

Hide Answer  

Ans: Given, sin α = 1/√2 and cot β = √3
We know that, cosec α = 1/sinα = √2
Also, 1 + cot2β = cosec2β
⇒ cosec2β = 4
⇒ cosec β = √4 = 2 
Now, cosec α + cosec β = √2 + 2

Q7: Prove that the Following Identities: Sec A (1 + Sin A) ( Sec A – tan A) = 1   (3 Marks) (2023)

Hide Answer  

Ans: LHS = sec A(1 + sin A )( sec A – tan A)

= 1cos A (1 + sin A) 1cos A – sin Acos A

= 1cos A (1 + sin A) (1 – sin Acos A)

= 1 – sin² Acos² A = cos² Acos² A

= 1

= RHS

Hence proved..

Q8: (secθ – 1) (cosec2 θ – 1) is equal to: (1 Mark) (CBSE 2023)
(a) –1 
(b) 1 
(c) 0 
(d) 2 

Hide Answer  

Ans: (b)

(sec²θ – 1) (cosec²θ – 1) = tan²θ . cot²θ

tan²θtan²θ       [ ∵ sec²θ – 1 = tan²θ & cosec²θ – 1 = cot²θ ]

= 1

Q9: If sin θ – cos θ =  0,  then find the value of sin4 θ + cos4 θ.     (2 Marks) (CBSE 2023)

Hide Answer  

Ans: Given, 
sin θ – cos θ = 0 
sin θ = cos θ 
tan θ = 1 
tan θ = tan 45° 
⇒ θ = 45° 
Now, sin4 θ + cos4 θ = sin45° + cos45°

= (1√2)4 + (1√2)4

= 14 + 14 = 12

Q10: Prove that sin A – 2 sin3 A2 cos3 A – cos A = tan A  (4 & 5 Marks) (CBSE 2023)

Hide Answer  

Ans:

LHS = sin A – 2 sin3 A2 cos3 A – cos A

= sin A (1 – 2 sin² A)cos A (2 cos² A – 1)

= sin A (1 – 2 (1 – cos² A)cos A (2 cos² A – 1)

= tan A 1 – 2 + 2 cos² A2 cos² A – 1

= tan A 2 cos² A – 12 cos² A – 1

= tan A

= RHS

Previous Year Questions 2022

Q1: Given that cos θ = √3/2, then the value of  cosec2θ – sec2θcosec2θ + sec2θ3 is  (2022) 
(a) -1
(b) 1
(c) 1/2
(d) -1/2

Hide Answer  

Ans: (c)
Sol:
Given, cosθ = √3/2  = B/H

Let B = √3k and H = 2k

∴ P = √((2k)2 – (√3k)2) [By Pythagoras Theorem]

⇒ k2 = k

∴ cosec θ = H / p = 2k / k = 2

sec θ = H / B = 2k / √3k = 2 / √3

cosec2θ – sec2θ = (2)2 – (2 / √3)24 – 4/3

= 4 – 43 = 83

cosec2θ + sec2θ = (2)2 + (2 / √3)24 + 4/3

= 4 + 43 = 163

Q2: 1cosec θ (1 – cot θ) + 1sec θ (1 – tan θ) is equal to   (2022)
(a) 0
(b) 1
(c) sinθ + cosθ
(d) sinθ – cosθ

Hide Answer  

Ans: (c)
Sol: We have,

1cosec θ (1 – cot θ) + 1sec θ (1 – tan θ)

= sin θcos θ / 1 – cos θsin θ + 1 – sin θ1 – cos θ

= 1cosec θ = sin θcos θ, 1sec θ

= sin2 θcos2 θ = sin2 θ – cos2 θsin θ – cos θ

= sin θ + cos θ

Q3: The value of θ for which 2 sin2θ = 1, is   (2022)
(a) 15° 
(b) 30°
(c) 45° 
(d) 60°

Hide Answer  

Ans: (a)
Sol: Given, 2 sin2θ = 1 ⇒ sin2θ = 1/2
⇒ 2θ = 30°
⇒ θ = 15°

Q4: If sin2θ + sinθ = 1, then find the value of cos2θ + cos4θ is   (2022)
(a) -1
(b) 1
(c) 0
(d) 2

Hide Answer  

Ans: (b)
Sol: Given, sin2θ + sinθ = 1 —(i)
sinθ = 1 – sin2θ
⇒ sinθ = cos2θ —(ii)
∴ cos2θ + cos4θ
= sinθ + sin2θ [From (ii)]
= 1        [From (i)]

Also read: Introduction: Trigonometric Ratios

Previous Year Questions 2021

Q1: If 3 sin A = 1. then find the value of sec A.    (2021 C)

Hide Answer  

Ans: We have, 3 sin A = 1
∴ sin A = 1/3
Now by using cosA = 1 – sin2 A, we get

cos2 A = 1 – 19 = 89
⇒ cos A = 2√23

∴ sec A = 1cos A = 12√2 / 3 = 3√24

Q2: Show that: 1 + cot2θ1 + tan2θ = cot2θ    (2021 C)

Hide Answer  

Ans: We have, L.H.S.
1 + cot2θ1 + tan2θ = cosec2θsec2θ
[By using 1 + tan2θ = sec2θ and 1 + cot2 θ = cosec2θ ]
⇒ 1sin2θ = cos2θsin2θ = cot2θ
Hence,
1 + cot2θ1 + tan2θ = cot2θ 

Attention!Sale expiring soon, act now & get EduRev Infinity at 40% off!

Previous Year Questions 2020

Q1: If sin θ = cos θ, then the value of tan2 θ + cot2 θ is (2020)
(a) 2
(b) 4
(c) 1
(d) 10/3

Hide Answer  

Ans: (a)
Sol: We have, sin θ = cos θ
or sin θ / cos θ = 1
⇒ tan θ = 1 and cot θ = 1     [∵ cot θ = 1/tanθ]
∴ tanθ + cotθ = 1 + 1 = 2
Hence, A option is correct.

Q2: Given 15 cot A = 8, then find the values of sin A and sec A.    (2020)

Hide Answer  

Ans: In right angle ΔABC we have
15 cot A = 8
⇒ cot A = 8/15

Since, cot A = AB/BC
∴ AB/BC = 8/15
Let AB = 8k and BC = 15k
By using Pythagoras theorem, we get
AC= AB2 + BC2
⇒ (8k)2 + (15)2 = 64k2 + 225k2 = 289k2 = (17k)

⇒ AC = √((17k)2) = 17k

∴ sin A = BCAC = 15k17k = 1517

and cos A = ABAC = 8k17k = 817

So, sec A = 1cos A = 178

Q3: Write the value of sin2 30° + cos2 60°.     (2020)

Hide Answer  

Ans:  We have, sin2 30° + cos2 60°

Q4: The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is      (2020)
(a) a+ b2
(b) a + b
(c) 
(d) 

Hide Answer  

Ans: (c)
Sol: Given the point A (cos θ + b sin θ , 0), (0 , a sin θ − b cos θ)
By distance formula,

The distance of

AB = √(x2 – x1)² + (y2 – y1

So,

AB = √(a cos θ + b sin θ – 0)² + (0 – a sin θ + b cos θ)²

= √ a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)

But according to the trigonometric identity,

sin²θ + cos²θ = 1

Therefore,

AB = √ a² + b²

Q5: 5 tan2θ – 5 sec2θ = ____________.    (2020)

Hide Answer  

Ans: We have 5(tan2θ – sec2θ)
= 5(-1) = – 5 [By using 1 + tan2θ = sec2 θ ⇒ tan2θ – sec2θ = – 1]

Q6: If sinθ + cosθ = √3. then prove that tan θ + cot θ = 1    (2020)

Hide Answer  

Ans: sin θ + cos θ =√3
= (sinθ + cosθ)= (√3)2
= sin2 θ + cos2 θ + 2sin θ cos θ = 3        (Since,sin2θ + cos2θ = 1)
= 1 + 2sin θ cos θ = 3  
⇒ 2sin θ cos θ = 2
⇒ sin θ cos θ = 1
⇒ sin θ cos θ = sin2θ + cos2θ
⇒ 1 = sin2θ + cos2θsin θ cos θ
⇒ tan θ + cot θ = 1

Q7: If x = a sinθ and y = b cosθ, write the value of (b2x2 + a2y2). (CBSE 2020)

Hide Answer  

Ans: Given, x = a sin θ and y = b cos θ 
Putting the values of x and y in  (b2x2 + a2y2)
We get, 
= b2(a sin θ)+ a2(b cos θ)2
= a2b2 [sin2 θ + cos2 θ]   [Also, sin2θ + cos2θ = 1]
= a2b2 [1]  
= a2b2

Q8: Prove that: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0. (CBSE 2020)

Hide Answer  

Ans: We know that, 
sin2 θ + cos2 θ = 1 
So, (sin2 θ + cos2 θ) 2 = 1
⇒ sin4 θ + cosθ + 2sin2 θ cos2 θ = 1 
i.e., sin4 θ + cos4 θ = 1 – 2 sin2 θ cos2 θ …(i) 
Also, (sin2 θ + cos2 θ) 3 = 13
⇒ sin6 θ + cos6 θ + 3 sin2 θ cos2 θ (sin2 θ + cos2 θ) = 1 
⇒ sin6 θ+ cos6 θ+ 3sin2 θ cos2 θ (1) = 1 
i.e., sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ …(ii) 
Now, 
LHS = 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 
= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ) + 1 
= 2 – 3 + 1 
= 0 
Hence, proved.

Q9: Prove that: (sin4 θ – cos4 θ + 1) cosec2 θ = 2.  [CBSE 2020].

Hide Answer  

Ans: L.H.S. = (sin4 θ – cos4 θ + 1) cosec2 θ 
= [(sin2 θ + cos2 θ) (sin2 θ – cos2 θ) + 1] cosec2 θ
[(1) (sin2 θ – cos2 θ) + 1] cosecθ         as [ sin2 θ + cos2 θ = 1] 
= [sin2 θ + (1 – cos2 θ)] cosec2 θ 
= (sinθ + sin2 θ) cosec2θ
= (2 sin2 θ) cosec2 θ

= 2 × 1
= 2 = R.H.S.
Hence, proved.

Previous Year Questions 2019

Q1: If sin x + cos y = 1, x = 30° and y is an acute angle, find the value of y.    (2019)

Hide Answer  

Ans: Given,
⇒ sin x + cos y = 1
⇒ sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
⇒ cos y = 1 – 1/2
⇒ cos y = 1/2
⇒ cos y = cos 60°.
Hence, y = 60°.

Q2: If cosec2 θ (cos θ – 1)(1 + cos θ) = k, then what is the value of k?   (2019)

Hide Answer  

Ans:  Given:
cosec2 θ (cos θ – 1)(1 + cos θ) = k
Concept used:
Cosec α = 1/Sin α
Sin2 α + Cos2 α = 1
(a + b)(a – b) = a2 – b2
Calculation:
cosec2 θ (cos θ – 1)(1 + cos θ) = k
⇒ cosec2 θ (1 – cos θ)(1 + cos θ) = – k
⇒ cosec2 θ (1 – cos2 θ) = -k      [Also, sin2 θ + cos2 θ = 1]
⇒ cosec2 θ × sin2 θ = -k
⇒ 1 = -k
⇒ k = -1
∴ The value of k is (-1).

Q3: The value of ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) is

Hide Answer  

Ans: 

(1 + cos Asin A – 1sin A ) (1 + sin Acos A + 1cos A )

= sin A + cos A – 1sin A × cos A + sin A + 1cos A

= (sin A + cos A)2 – 1sin A . cos A

= sin2A + cos2A + 2 sin A . cos A – 1sin A . cos A

= sin2A + cos2A – 1 + 2 sin A . cos Asin A . cos A

= 2

Also read: Introduction: Trigonometric Ratios

Previous Year Questions 2013

Q1: If sec θ + tan θ + 1 = 0, then sec θ – tan θ is: 
(a) –1 
(b) 1 
(c) 0 
(d) 2  (CBSE 2013)

Hide Answer  

Ans: (a)

sec θ + tan θ + 1 = 0

⇒ sec θ + tan θ = -1

Multiplying and dividing LHS by sec θ – tan θ, we get

⇒ (sec θ + tan θ) × sec θ – tan θsec θ – tan θ = -1

⇒ sec² θ – tan² θsec θ – tan θ = -1

⇒ 1 + tan² θ – tan² θsec θ – tan θ = -1 (∵ sec² θ = 1 + tan² θ)

⇒ 1sec θ – tan θ = -1

⇒ sec θ – tan θ = -1

Hence, the correct option is (a).

Previous Year Questions: Introduction to Trigonometry

Table of contents
Previous Year Questions 2025
Previous Year Questions 2024
Previous Year Questions 2023
Previous Year Questions 2022
Previous Year Questions 2021
Previous Year Questions 2020

View More

Previous Year Questions 2025

Q1: If tan A+ cot A= 6, then find the value of tan2A + cot2 A – 4. 

Hide Answer  

Ans: We have, tanA + cotA = 6 
On squaring both sides, we get (tanA + cotA)2 = 36 
⇒ tan2A + cot2A + 2 tanA cotA = 36 
Since tan A cot A = 1
⇒ tan2A + cot2A + 2 = 36
⇒ tan 2A + cot 2A = 36 – 2 = 34 
∴ tan2A + cot2A – 4 = 34 – 4 = 30

Q2:  If tan 3θ = √3, then θ/2 equals 
(a) 60° 
(b) 30° 
(c) 20° 
(d) 10°

Hide Answer  

Ans: (d) 
We have, tan3θ = √3 
⇒ tan3θ = tan 60° 

Q3: If sin 4θ = √3/2, then θ/3 equals:
(a) 60° 
(b) 20° 
(c) 15° 
(d) 5° 

Hide Answer  

Ans: (d) 
Given, sin 4θ = √3/2 = sin 60°.
⇒ 4θ = 60°
⇒ θ = 15°.

Q4: If α + β = 90° and α = 2β, then cos2α + sin2β is equal to: 
(a) 0 
(b) 1/2
(c) 1 
(d) 2 

Hide Answer  

Ans: (b) 
α + β = 90° and α = 2β     …(i) 
∴ 2β + β = 90° ⇒ 3β = 90° ⇒ β = 30° 
∴ α = 2 × 30° = 60° [From (i)] 
∴ cos²α + sin²β = cos²60° + sin²30°

Q5:  then x : y =
(a) 1 : 1 
(b) 1 : 2
(c) 2 : 1 
(d) 4: 1

Hide Answer  

Ans: (c) 

Q6: If 4k = tan260° – 2cosec2 30° – 2tan2 30°, then find the value of k. 

Hide Answer  

Ans: Given, 4k = tan260° – 2 cosec230° – 2 tan230° 

Q7: If x cos60° + ycos0° + sin30° – cot45° = 5, then find the value of x + 2y. 

Hide Answer  

Ans: We have, x cos60° + y cos0° + sin30° – cot45° = 5 

Q8: 

Hide Answer  

Ans: 

Q9: 
(a) cot θ
(b) 
(c) 
(d) tan θ

Hide Answer  

Ans: (a) 
We have, 
 [∵ 1 – cos2θ = sin2θ]

Q10:  The value of (tan A cosec A)2 – (sin A sec A)2 is: 
(a) 0 
(b) 1 
(c) -1 
(d) 2

Hide Answer  

Ans: (b) 
We have, 
(tan A · cosec A)2 – (sin A . sec A)2  
Using identities:
tan A = sin A / cos A,
cosec A = 1 / sin A,
sec A = 1 / cos A.
sec² A – tan² A = 1

Q11: (cotθ + tanθ) equals: 
(a) cosecθ secθ 
(b) sinθ secθ
(c) cosθ tanθ 
(d) sinθ cosθ

Hide Answer  

Ans: (a)
We have, cotθ + tanθ 
cot θ = cos θ / sin θ,
tan θ = sin θ / cos θ.

Q12:  The value of 
(a) 1
(b) 0
(c) -1
(d) 2

Hide Answer  

Ans: (c)

Q13: In a right triangle ABC, right-angled at A, if sin B = 1/4 then the value of sec B is 
(a) 4
(b) √15/4
(c) √15
(d) 4/√15

Hide Answer  

Ans: (d) 
Given, sin B = 1/4

Q14: If a secθ + b tan θ = m and b sec θ + a tan θ = n, prove that a2 + n2 = b2 + m2   

Hide Answer  

Ans: 
We have, a sec θ + b tan θ = m
and b sec θ + a tan θ = n
Taking, m² – n²
= (a sec θ + b tan θ)² – (b sec θ + a tan θ)²
= a²sec²θ + b²tan²θ + 2ab tan θ sec θ – b²sec²θ – a²tan²θ – 2ab tan θ sec θ
= a²(sec²θ – tan²θ) + b²(tan²θ – sec²θ)
= a² × 1 + b² × (-1)
= a² – b²
∴ m² – n² = a² – b²
⇒  a² + n² = b² + m²
Hence, proved.

Q15: Use the identity: sin2A + cos2A = 1 to prove that tan2A + 1 = sec2A. Hence, find the value of tan A, where sec A = 5/3, where A is an acute angle.

Hide Answer  

Ans: 
To prove: tan2A + 1 = sec2
Taking L.H.S., tan2 A+ 1 

∴ L.H.S = R.H.S

Q16: Prove that: 

Hide Answer  

Ans: 

Q17: Prove that: 

Hide Answer  

Ans: 


Q18: Prove that: 

Hide Answer  

Ans: 

Q19: 

Hide Answer  

Ans: 

Q20: Given that sinθ + cosθ = x, prove that 

Hide Answer  

Ans: sin θ + cos θ = x …(i) 
Squaring both sides in equation (i), 
sin² θ + cos² θ + 2sin θ cos θ = x² 
2sin θ cos θ = x² – 1 …(ii) 
[∵ sin² θ + cos² θ = 1] 
Also, sin² θ + cos² θ = (sin θ + cos θ)² – 2sin θ cos θ

Q21: Prove that: 

Hide Answer  

Ans: 

Previous Year Questions 2024

Q1: If sin α = √3/2, cos β = √3/2 then tan α. tan β is:    (1 Mark) (CBSE 2024)
(a) √3
(b) 1/√3
(c) 1
(d) 0

Hide Answer  

Ans: (c)
sin α = √3/2, ⇒ sin α  = sin 60º
⇒ α = 60º
∵ cos β = √3/2, 
⇒ cos β = cos 30º 
⇒ β = 30º 
tan α. tan β = tan 60º. tan 30º
= √3 x 1√3

= 1

Q2: Evaluate: 5 tan 60°(sin² 60° + cos² 60°) tan 30°        (3 Marks) (CBSE 2024)

Hide Answer  

Ans:

5 tan 60°(sin² 60° + cos² 60°) tan 30° = 5 × √31 × 1√3

= 5 × √3 × √3

= 5 × 3

= 15

Q3: Prove that: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1     (3 Marks) (CBSE 2024)

Hide Answer  

Ans:
L.H.S. = (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
= (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Since, cosec θ = 1/sin θ, sec θ =  1/cos θ, tan θ = sin θ/cos θ, cot θ = cos θ/sin θ
= (1/sin θ – sin θ) (1/cos θ – cos θ) (sin θ/cos θ + cos θ/sin θ)

= 1 – sin2θsin θ × 1 – cos2θcos θ × sin2θ + cos2θsin θ . cos θ

= cos2θ × sin2θsin θ × cos θ × 1sin θ . cos θ

= sin θ . cos θ1 × 1sin θ . cos θ    [ : sin2θ + cos2θ = 1 ]

= 1 = R.H.S.
Hence, proved.

Get additional INR 200 off today with EDUREV200 coupon.

Previous Year Questions 2023

Q1: If 2 tan A = 3, then find the value of 4 sin A + 5 cos A6 sin A + 2 cos A  is   (3 Marks)(2023)

Hide Answer  

Ans:

Given:

2 tan A = 3 ⇒ tan A = 3/2

Using sin2 A + cos2 A = 1, let:

sin A = 3/√13, cos A = 2/√13

Substituting in the given expression:

4 sin A + 5 cos A6 sin A + 2 cos A

= 4 × 3/√13 + 5 × 2/√136 × 3/√13 + 2 × 2/√13

= 12/√13 + 10/√1318/√13 + 4/√13

= 22/√1322/√13

= 1

Q2: 5/8 sec260° – tan260° + cos245° is equal to    (1 Mark) (2023)
(a) 5/3
(b) -1/2
(c) 0
(d) -1/4

Hide Answer  

Ans: (c)
Sol:
58 × (2)2 – (√3)2 + (1√2)2 = 5/8 × 4 – 3 + 12 = 0
 

Q3: Evaluate 2 sec2θ + 3 cosec2θ – 2 sin θ cos θ if θ = 45°      (2 Marks) (CBSE 2023)

Hide Answer  

Ans: Since θ = 45°, sec 45° = √2, cosec 45° = √2, sin 45° = 1/√2 cos 45° = 1/√2
2sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
= 2 (√2)2 + 3 (√2)2 – 2 (1√2) × (1√2)

= 2 × 2 + 3 × 2 – 2 × 12

= 4 + 6 – 1

= 9

Q4: Which of the following is true for all values of θ(0o ≤ θ ≤ 90o)? (1 Mark) (2023)
(a) 
cos2θ – sin2θ – 1
(b) 
cosec2θ – sec2θ- 1
(c) 
sec2θ – tan2θ – 1
(d) 
cot2θ- tan2θ = 1

Hide Answer  

Ans: (c)

Option (a): cos²θ – sin²θ – 1
Using the identity: cos²θ – sin²θ = cos 2θ, we get cos²θ – sin²θ – 1 = cos 2θ – 1, which is not always true. So, this option is incorrect.

Option (b): cosec²θ – sec²θ – 1
Using the identities cosec²θ = 1 + cot²θ and sec²θ = 1 + tan²θ, 
we get cosec²θ – sec²θ – 1 = (1 + cot²θ) – (1 + tan²θ) – 1 = cot²θ – tan²θ – 1, which is not always zero. So, this option is incorrect.

Option (c): sec²θ – tan²θ – 1
Using the identity sec²θ = 1 + tan²θ, 
we get sec²θ – tan²θ – 1 = (1 + tan²θ) – tan²θ – 1 = 0, which is always true. 
So, this option is correct.

Option (d): cot²θ – tan²θ = 1
Using the identity cot²θ = 1/tan²θ, we get cot²θ – tan²θ = (1/tan²θ) – tan²θ, which is not always equal to 1. So, this option is incorrect.

Q5: If sinθ +cosθ = √3. then find the value of sinθ. cosθ.   (3 Marks) (2023)

Hide Answer  

Ans: Given, sinθ +cosθ = √3
Squaring both sides, we get (sinθ + cosθ)2 = (√3)2
⇒ sin2θ + cos2θ + 2sinθ cosθ = 3 ( ∵ sin2θ + cos2θ = 1)
⇒ 1 + 2sinθ cosθ = 3 
⇒ 2sinθ cosθ = 3 – 1  
⇒ 2sinθ cosθ = 2
⇒  sinθ cosθ = 1

Q6: If sin α = 1/√2 and cot β = √3, then find the value of cosec α + cosec β.   (3 Marks) (2023)

Hide Answer  

Ans: Given, sin α = 1/√2 and cot β = √3
We know that, cosec α = 1/sinα = √2
Also, 1 + cot2β = cosec2β
⇒ cosec2β = 4
⇒ cosec β = √4 = 2 
Now, cosec α + cosec β = √2 + 2

Q7: Prove that the Following Identities: Sec A (1 + Sin A) ( Sec A – tan A) = 1   (3 Marks) (2023)

Hide Answer  

Ans: LHS = sec A(1 + sin A )( sec A – tan A)

= 1cos A (1 + sin A) 1cos A – sin Acos A

= 1cos A (1 + sin A) (1 – sin Acos A)

= 1 – sin² Acos² A = cos² Acos² A

= 1

= RHS

Hence proved..

Q8: (secθ – 1) (cosec2 θ – 1) is equal to: (1 Mark) (CBSE 2023)
(a) –1 
(b) 1 
(c) 0 
(d) 2 

Hide Answer  

Ans: (b)

(sec²θ – 1) (cosec²θ – 1) = tan²θ . cot²θ

tan²θtan²θ       [ ∵ sec²θ – 1 = tan²θ & cosec²θ – 1 = cot²θ ]

= 1

Q9: If sin θ – cos θ =  0,  then find the value of sin4 θ + cos4 θ.     (2 Marks) (CBSE 2023)

Hide Answer  

Ans: Given, 
sin θ – cos θ = 0 
sin θ = cos θ 
tan θ = 1 
tan θ = tan 45° 
⇒ θ = 45° 
Now, sin4 θ + cos4 θ = sin45° + cos45°

= (1√2)4 + (1√2)4

= 14 + 14 = 12

Q10: Prove that sin A – 2 sin3 A2 cos3 A – cos A = tan A  (4 & 5 Marks) (CBSE 2023)

Hide Answer  

Ans:

LHS = sin A – 2 sin3 A2 cos3 A – cos A

= sin A (1 – 2 sin² A)cos A (2 cos² A – 1)

= sin A (1 – 2 (1 – cos² A)cos A (2 cos² A – 1)

= tan A 1 – 2 + 2 cos² A2 cos² A – 1

= tan A 2 cos² A – 12 cos² A – 1

= tan A

= RHS

Previous Year Questions 2022

Q1: Given that cos θ = √3/2, then the value of  cosec2θ – sec2θcosec2θ + sec2θ3 is  (2022) 
(a) -1
(b) 1
(c) 1/2
(d) -1/2

Hide Answer  

Ans: (c)
Sol:
Given, cosθ = √3/2  = B/H

Let B = √3k and H = 2k

∴ P = √((2k)2 – (√3k)2) [By Pythagoras Theorem]

⇒ k2 = k

∴ cosec θ = H / p = 2k / k = 2

sec θ = H / B = 2k / √3k = 2 / √3

cosec2θ – sec2θ = (2)2 – (2 / √3)24 – 4/3

= 4 – 43 = 83

cosec2θ + sec2θ = (2)2 + (2 / √3)24 + 4/3

= 4 + 43 = 163

Q2: 1cosec θ (1 – cot θ) + 1sec θ (1 – tan θ) is equal to   (2022)
(a) 0
(b) 1
(c) sinθ + cosθ
(d) sinθ – cosθ

Hide Answer  

Ans: (c)
Sol: We have,

1cosec θ (1 – cot θ) + 1sec θ (1 – tan θ)

= sin θcos θ / 1 – cos θsin θ + 1 – sin θ1 – cos θ

= 1cosec θ = sin θcos θ, 1sec θ

= sin2 θcos2 θ = sin2 θ – cos2 θsin θ – cos θ

= sin θ + cos θ

Q3: The value of θ for which 2 sin2θ = 1, is   (2022)
(a) 15° 
(b) 30°
(c) 45° 
(d) 60°

Hide Answer  

Ans: (a)
Sol: Given, 2 sin2θ = 1 ⇒ sin2θ = 1/2
⇒ 2θ = 30°
⇒ θ = 15°

Q4: If sin2θ + sinθ = 1, then find the value of cos2θ + cos4θ is   (2022)
(a) -1
(b) 1
(c) 0
(d) 2

Hide Answer  

Ans: (b)
Sol: Given, sin2θ + sinθ = 1 —(i)
sinθ = 1 – sin2θ
⇒ sinθ = cos2θ —(ii)
∴ cos2θ + cos4θ
= sinθ + sin2θ [From (ii)]
= 1        [From (i)]

Also read: Introduction: Trigonometric Ratios

Previous Year Questions 2021

Q1: If 3 sin A = 1. then find the value of sec A.    (2021 C)

Hide Answer  

Ans: We have, 3 sin A = 1
∴ sin A = 1/3
Now by using cosA = 1 – sin2 A, we get

cos2 A = 1 – 19 = 89
⇒ cos A = 2√23

∴ sec A = 1cos A = 12√2 / 3 = 3√24

Q2: Show that: 1 + cot2θ1 + tan2θ = cot2θ    (2021 C)

Hide Answer  

Ans: We have, L.H.S.
1 + cot2θ1 + tan2θ = cosec2θsec2θ
[By using 1 + tan2θ = sec2θ and 1 + cot2 θ = cosec2θ ]
⇒ 1sin2θ = cos2θsin2θ = cot2θ
Hence,
1 + cot2θ1 + tan2θ = cot2θ 

Attention!Sale expiring soon, act now & get EduRev Infinity at 40% off!

Previous Year Questions 2020

Q1: If sin θ = cos θ, then the value of tan2 θ + cot2 θ is (2020)
(a) 2
(b) 4
(c) 1
(d) 10/3

Hide Answer  

Ans: (a)
Sol: We have, sin θ = cos θ
or sin θ / cos θ = 1
⇒ tan θ = 1 and cot θ = 1     [∵ cot θ = 1/tanθ]
∴ tanθ + cotθ = 1 + 1 = 2
Hence, A option is correct.

Q2: Given 15 cot A = 8, then find the values of sin A and sec A.    (2020)

Hide Answer  

Ans: In right angle ΔABC we have
15 cot A = 8
⇒ cot A = 8/15

Since, cot A = AB/BC
∴ AB/BC = 8/15
Let AB = 8k and BC = 15k
By using Pythagoras theorem, we get
AC= AB2 + BC2
⇒ (8k)2 + (15)2 = 64k2 + 225k2 = 289k2 = (17k)

⇒ AC = √((17k)2) = 17k

∴ sin A = BCAC = 15k17k = 1517

and cos A = ABAC = 8k17k = 817

So, sec A = 1cos A = 178

Q3: Write the value of sin2 30° + cos2 60°.     (2020)

Hide Answer  

Ans:  We have, sin2 30° + cos2 60°

Q4: The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is      (2020)
(a) a+ b2
(b) a + b
(c) 
(d) 

Hide Answer  

Ans: (c)
Sol: Given the point A (cos θ + b sin θ , 0), (0 , a sin θ − b cos θ)
By distance formula,

The distance of

AB = √(x2 – x1)² + (y2 – y1

So,

AB = √(a cos θ + b sin θ – 0)² + (0 – a sin θ + b cos θ)²

= √ a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)

But according to the trigonometric identity,

sin²θ + cos²θ = 1

Therefore,

AB = √ a² + b²

Q5: 5 tan2θ – 5 sec2θ = ____________.    (2020)

Hide Answer  

Ans: We have 5(tan2θ – sec2θ)
= 5(-1) = – 5 [By using 1 + tan2θ = sec2 θ ⇒ tan2θ – sec2θ = – 1]

Q6: If sinθ + cosθ = √3. then prove that tan θ + cot θ = 1    (2020)

Hide Answer  

Ans: sin θ + cos θ =√3
= (sinθ + cosθ)= (√3)2
= sin2 θ + cos2 θ + 2sin θ cos θ = 3        (Since,sin2θ + cos2θ = 1)
= 1 + 2sin θ cos θ = 3  
⇒ 2sin θ cos θ = 2
⇒ sin θ cos θ = 1
⇒ sin θ cos θ = sin2θ + cos2θ
⇒ 1 = sin2θ + cos2θsin θ cos θ
⇒ tan θ + cot θ = 1

Q7: If x = a sinθ and y = b cosθ, write the value of (b2x2 + a2y2). (CBSE 2020)

Hide Answer  

Ans: Given, x = a sin θ and y = b cos θ 
Putting the values of x and y in  (b2x2 + a2y2)
We get, 
= b2(a sin θ)+ a2(b cos θ)2
= a2b2 [sin2 θ + cos2 θ]   [Also, sin2θ + cos2θ = 1]
= a2b2 [1]  
= a2b2

Q8: Prove that: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0. (CBSE 2020)

Hide Answer  

Ans: We know that, 
sin2 θ + cos2 θ = 1 
So, (sin2 θ + cos2 θ) 2 = 1
⇒ sin4 θ + cosθ + 2sin2 θ cos2 θ = 1 
i.e., sin4 θ + cos4 θ = 1 – 2 sin2 θ cos2 θ …(i) 
Also, (sin2 θ + cos2 θ) 3 = 13
⇒ sin6 θ + cos6 θ + 3 sin2 θ cos2 θ (sin2 θ + cos2 θ) = 1 
⇒ sin6 θ+ cos6 θ+ 3sin2 θ cos2 θ (1) = 1 
i.e., sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ …(ii) 
Now, 
LHS = 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 
= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ) + 1 
= 2 – 3 + 1 
= 0 
Hence, proved.

Q9: Prove that: (sin4 θ – cos4 θ + 1) cosec2 θ = 2.  [CBSE 2020].

Hide Answer  

Ans: L.H.S. = (sin4 θ – cos4 θ + 1) cosec2 θ 
= [(sin2 θ + cos2 θ) (sin2 θ – cos2 θ) + 1] cosec2 θ
[(1) (sin2 θ – cos2 θ) + 1] cosecθ         as [ sin2 θ + cos2 θ = 1] 
= [sin2 θ + (1 – cos2 θ)] cosec2 θ 
= (sinθ + sin2 θ) cosec2θ
= (2 sin2 θ) cosec2 θ

= 2 × 1
= 2 = R.H.S.
Hence, proved.

Previous Year Questions 2019

Q1: If sin x + cos y = 1, x = 30° and y is an acute angle, find the value of y.    (2019)

Hide Answer  

Ans: Given,
⇒ sin x + cos y = 1
⇒ sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
⇒ cos y = 1 – 1/2
⇒ cos y = 1/2
⇒ cos y = cos 60°.
Hence, y = 60°.

Q2: If cosec2 θ (cos θ – 1)(1 + cos θ) = k, then what is the value of k?   (2019)

Hide Answer  

Ans:  Given:
cosec2 θ (cos θ – 1)(1 + cos θ) = k
Concept used:
Cosec α = 1/Sin α
Sin2 α + Cos2 α = 1
(a + b)(a – b) = a2 – b2
Calculation:
cosec2 θ (cos θ – 1)(1 + cos θ) = k
⇒ cosec2 θ (1 – cos θ)(1 + cos θ) = – k
⇒ cosec2 θ (1 – cos2 θ) = -k      [Also, sin2 θ + cos2 θ = 1]
⇒ cosec2 θ × sin2 θ = -k
⇒ 1 = -k
⇒ k = -1
∴ The value of k is (-1).

Q3: The value of ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) is

Hide Answer  

Ans: 

(1 + cos Asin A – 1sin A ) (1 + sin Acos A + 1cos A )

= sin A + cos A – 1sin A × cos A + sin A + 1cos A

= (sin A + cos A)2 – 1sin A . cos A

= sin2A + cos2A + 2 sin A . cos A – 1sin A . cos A

= sin2A + cos2A – 1 + 2 sin A . cos Asin A . cos A

= 2

Also read: Introduction: Trigonometric Ratios

Previous Year Questions 2013

Q1: If sec θ + tan θ + 1 = 0, then sec θ – tan θ is: 
(a) –1 
(b) 1 
(c) 0 
(d) 2  (CBSE 2013)

Hide Answer  

Ans: (a)

sec θ + tan θ + 1 = 0

⇒ sec θ + tan θ = -1

Multiplying and dividing LHS by sec θ – tan θ, we get

⇒ (sec θ + tan θ) × sec θ – tan θsec θ – tan θ = -1

⇒ sec² θ – tan² θsec θ – tan θ = -1

⇒ 1 + tan² θ – tan² θsec θ – tan θ = -1 (∵ sec² θ = 1 + tan² θ)

⇒ 1sec θ – tan θ = -1

⇒ sec θ – tan θ = -1

Hence, the correct option is (a).