07. Worksheet: Triangles

Multiple Choice Questions

Q1: If AD = BC and ∠ BAD = ∠ ABC, then ∠ ACB is equal to
(a) 
∠ABD
(b) 
∠ BAD
(c) 
∠BAC
(d) 
∠BDA

Q2: If O is a midpoint of AB and ∠BQO = ∠APO, then ∠OAP is equal to
(a)
 ∠QPA
(b) 
∠OQB
(c) 
∠QBO
(d)
 ∠BOQ

Q3: If △ABC is an isosceles triangle, ∠ B = 65º, AB = AC,∠ B = 65º, then find ∠ A.
(a) 
60º
(b) 
70º
(c) 
50º
(d) 
none of these

Q4: An angle is 14​º more than its complement. Find its measure.
(a) 
42º
(b) 
32º
(c)
 52º
(d)
 62º

Q5: If ABCD is a quadrilateral where AD= CB, AB=CD, and ∠ D= ∠ B, then ∠CAB is equal to
(a) 
∠ACD
(b)
 ∠CAD
(c) 
∠ACD
(d) 
∠BAD

Q6: If AB ⊥BC and ∠A =∠C, then the correct statement will
(a)
 AB ≠ AC
(b) 
AB = BC
(c) 
AB = AD
(d) 
AB = AC

Q7: If AB = AC and ∠ ACD = 120º, find ∠A.
(a) 
50º
(b) 
60º
(c) 
70º
(d)
 None of these

Answer the following questions

Q1: AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

Q2: AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that ∠BAD = ∠ABE and ∠EPA = ∠DPB. Show that
(i) 
ΔDAP ≌ ΔEBP
(ii) 
AD = BE

Q3: In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.

Q4: In Figure OA = OB and OD = OC.
Show that
(i) ΔAOD ≅ ΔBOC
(ii) AD || BC

Q5: In Fig, AC = AE, AB = AD and ∠BAD = ∠EAC. Show that BC = DE.

Q6: In ΔABC, the bisector AD of ∠A is perpendicular to side BC. Show that AB = AC and ΔABC is isosceles.

Q7: ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that
(i) 
ΔABE ≌ ΔACF
(ii) 
AB = AC, i.e., ABC is an isosceles triangle